Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 20(4)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35447938

ABSTRACT

A series of twenty-three linear and branched chain mono acetylene lipids were isolated from the Caribbean Sea sponge Cribrochalina vasculum. Seventeen of the compounds, 1-17, are new, while six, 18-23, were previously characterized from the same sponge. Some of the new acetylene-3-hydroxy alkanes 1, 6, 7, 8, 10 were tested for selective cytotoxicity in non-small cell lung carcinoma (NSCLC) cells over WI-38 normal diploid lung fibroblasts. Compound 7, presented clear tumor selective activity while, 1 and 8, showed selectivity at lower doses and 6 and 10, were not active towards NSCLC cells at all. The earlier reported selective cytotoxicity of some acetylene-3-hydroxy alkanes (scal-18 and 23), in NSCLC cells and/or other tumor cell types were also confirmed for 19, 20 and 22. To further study the structure activity relationships (SAR) of this group of compounds, we synthesized several derivatives of acetylene-3-hydroxy alkanes, rac-18, scal-S-18, R-18, rac-27, rac-32, R-32, S-32, rac-33, rac-41, rac-42, rac-43, rac-45, rac-48 and rac-49, along with other 3-substituted derivatives, rac-35, rac-36, rac-37, rac-38, rac-39 and rac-40, and assessed their cytotoxic activity against NSCLC cells and diploid fibroblasts. SAR studies revealed that the alcohol moiety at position 3 and its absolute R configuration both were essential for the tumor cell line selective activity while for its cytotoxic magnitude the alkyl chain length and branching were of less significance.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Acetylene/therapeutic use , Alkanes , Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Structure-Activity Relationship
2.
J Nat Prod ; 83(2): 374-384, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32072810

ABSTRACT

Chemical investigation of the Mediterranean Sea sponge, Agelas oroides, collected off the Tel Aviv coast, yielded eight new bromopyrrole metabolites, agesamine C (1), dioroidamide A (2), slagenin D (3), (-)-monobromoagelaspongin (4), (-)-11-deoxymonobromoagelaspongin (5), (-)-11-O-methylmonobromoagelaspongin (6), E-dispacamide (7), and pyrrolosine (8), along with 18 known bromopyrrole alkaloids and a known bromotyrosine derivative. The structures of the new metabolites were elucidated by analysis of the spectroscopic and spectrometric data, including 1D and 2D NMR, ECD, and high-resolution mass spectrometry. The sponge extract exhibited antimicrobial activity against pathogenic and environmental bacteria, and quorum sensing inhibitory activity (QSI) against Chromobacterium violaceum. QSI guided separation of the extract established oroidin, benzosceptrin C, and 4,5-dibromopyrrole-2-carboxamide as the active components. The latter compounds were tested for inhibition of growth and biofilm formation in Pseudomonas aeruginosa PAO1. The most active and available compound, oroidin, was assayed for inhibition of growth and biofilm formation in bacteria that were isolated from the sponge and its environment.


Subject(s)
Agelas/chemistry , Alkaloids/chemistry , Anti-Bacterial Agents/chemistry , Imidazoles/chemistry , Pyrroles/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Chromobacterium , Mediterranean Sea , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...